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1. INTRODUCTION 
Let x0, xl9 x2, • • • be a sequence of natural numbers satisfying a nonlinear r ecu r -

rence of the form x n + 1 = x^ + g^, where |g | < -Jx for n > n0. Numerous examples 
of such sequences are given, arising from Boolean functions, graph theory, language theory, 
automata theory, and number theory. By an elementary method it is shown that the solution 
is x n = neares t integer to k2n, for n > n0, where k is a constant. That i s , these are 
doubly exponential sequences. In some cases k is a "known" constant (such as 4(1 + N/5"))I 
but in general the formula for k involves x0, x1$ x2, • • •! 

2. EXAMPLES OF DOUBLY EXPONENTIAL SEQUENCES 
2.1 BOOLEAN FUNCTIONS 
The simplest example is defined by 

(1) x n + 1 = x£, n > 0; x0 = 2 

so that the sequence is 2, 4, 16, 256, 65536, 4294967296, ••• and x = 22 . This is the = 22 n. 
number of Boolean functions of n variables ([12] , p. 47) or equivalently the number of 
ways of coloring the vert ices of an n-dimensional cube with two colors. 

2.2 ENUMERATING PLANAR TREES BY HEIGHT 

The recurrence 
(2) x _ = x2 + 1, n > 0; x0 = 1 

n+1 n u 

generates the sequence 1, 2, 5, 26, 677, 458330, 210066388901, • • • . This a r i s e s , for ex-
ample, in the enumeration of planar binary t rees . 

We assume the reader knows what a rooted tree ([10]) i s . (The drawings below are of 
rooted t rees . ) A binary rooted tree is a rooted tree in which the root node has degree 2 and 
all other nodes have degree 1 or 3 (or else is the trivial tree consisting of the root node 
alone). A planar binary rooted tree is a part icular embedding of a binary rooted tree in the 
plane. 

The height of a rooted tree is the maximum length of a path from any node to the root. 
For example here are the planar binary rooted t rees of heights 0, 1 and 2. (Here the 

root is drawn at the bottom.) 
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Let x be the number of planar binary rooted t rees of height at most n, so that x0 = 
1, x4 = 2, x2 • = 5. Deleting the root node either leaves the empty t ree or two t rees of height 
at most n - . 1 , from which it follows that x satisfies (2). 

n 
Planar binary rooted t rees ar ise in a variety of splitting processes . We give three 

il lustrations. 
a. In parsing certain context-free languages [1] , [13], [18]. For example, consider 
a context-free grammar G with two productions N—>NN and N—*>t where N is a 
nonterminal and t a terminal symbol. Derivation t rees for the sentences t and tt 
a re shown below.* Deleting the terminal symbols 

N N 

N 
t | j 

t t 

and their adjacent edges converts a derivation t ree into a planar binary rooted t ree . 
Thus x represents the number of derivation t rees for G of height at most n + 1. 
b. Using the natural correspondence ([4] , Vol. 1, p. 65) between planar binary rooted 
t rees and the parenthesizing of a sentence, x is the number of ways of parenthesizing 
a string of symbols of any length so that the parentheses are nested to depth at most n. 
c. If, in a planar binary rooted t ree , we write a 0 when the path branches to the left 
and a 1 when the path branches to the right, the set of all paths from the root to the 
nodes of degree 1 forms a variable length binary code ([7]). Thus x is the number 
of variable length binary codes of maximum length at most n. 

3.3 THE RECURRENCE 

(3) x ,- = x2 - 1, n > 0; x0 = 2 
n+1 n ' u 

generates the sequence 2, 3, 8, 63, 3968, 15745023, 247905749270528, •••. 

2.4 THE RECURRENCE 
(4) y n + 1 = £ - y n + 1, n > 1; Y l = 2 

generates the sequence 2, 3, 7, 43 , 1807, 3263443, 10650056950807, • • • . This sequence 
occurs (a) in Lucas1 test for the primality of Mersenne numbers ( [ l l ] , p. 233) and (b) in 
approximating numbers by sums of reciprocals . Any positive real number y < 1 admits a 
unique expansion of the form 

1 -L. ! J. 1 a. 
y = — + — + — + • • • , 

Yl Yl Y3 

In language theory, it is customary to draw t rees with the root at the top. 
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where the y. are integers so chosen that after i t e rms , when the sum s. has been ob-
tained, y.+- is the least integer such that s. + l /y . does not exceed y ([16]). It follows 
that y = y | - y + € , e ^ 1. The most slowly converging such ser ies is 

2 3 7 43 

when e. - l for i ^ 1; this converges to 1, and the denominators satisfy (4). Recurrence 
(4) is a special case of the next example. 

2.5 GOLOMB'S NONLINEAR RECURRENCES 

For r = 1, 2, • • • , Golomb [9] has defined a sequence [y ] by 

(5) y g , - y ^ - y ^ T . n > 0; y<r> = 1 . 

Equivalent definitions are 
y0

(r) = 1, Yl
( r ) = r + 1 

( ^ ) 2 
(6) y S l - ^ Y - r y ^ + r , n > l 
and 

y0
(r) - 1, yj r ) = r + 1 

(7) y S = (y!;r) - PY + (2P - P
2 ) , n > l , 'n+1 - (tf - >)' 

where p = ^ . 

From (6) [y ] is the sequence of example 2.4. The Fermat numbers a re y . The 
(2) n (5) n 

sequences [yn ] - [y^ ] begin: 

1, 3, 5, 17, 257, 65537, 4294967297, ••• 

1, 4, 7, 31, 871, 756031, 571580604871, ••• 

1, 5, 9, 49, 2209, 4870849, 23725150497409, ••• 

1, 6, 11, 71, 4691, 21982031, 483209576974811, ••• . 

(3) (Note that the value of yg given in [9j is incorrect . ) 
(r) The substitution x

n
 = Yn - P > n > 1, converts (7) to 

A 
(8) x n + 1 = K2

R + p ( l - p), n > 0; x0 = (1 + p2) 

2.6 THE RECURRENCE 
y0 = 1, yt = 2 , 

(9) y n + 1 = 2yn(yn - 1), n > 1 
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generates the sequence 1, 2, 4, 24, 1104, 2435424, 11862575248704, • • • , which also a r i ses 
in approximating ni 
1, converts (9) to 
in approximating numbers by sums of reciprocals [16]. The substitution x = 2y - 1, n > 

x0 = \ /5 , 

(10) xn + 1 = - 4 - 2 . n ^ ° • 

Sequences generated by (10) with different initial values a re also used in primality testing. 
With the initial value x0 = 3 we obtain the sequence 3, 7, 47, 2207, 4870847, 23725150497407, 
• • • ( [17] , p. 280), and with x0 = 4 the sequence 4, 14, 194, 37634, 1416317954, • • • ([19]). 

2.7 THE RECURRENCE 

y0 = 1, yt = 2 

<n> yn +i = £ - £-i. n > i 

generates the sequence 1, 2, 3, 5, 16, 231, 53105, 2820087664, • • • . In [3] it was given as 
a puzzle to guess the recurrence satisfied by this sequence. 

The substitution x = y - -k n > 0, converts (11) to n .n * — v 

x0 ~ Y' x i = ^ "Z » x 2 = 2 -?p 

(12) x ,n = x2 - x2
 0 - x 0 - 1, n > 2 . 

n+1 n n-2 n-2 

3. SOLVING THE RECURRENCES 

Recurrences (l)-(3), (8), (10) and (12) all have the form 

(13) x ^ = x2 + g , n > 0 v n+1 n &n 

with boundary conditions, and are such that 
(i) x > 0 

n 
(ii) g < 4- x and 1 < x for n > n0 and 
v | & n i 4 n — n — u 

(iii) g satisfies condition (16) below. 
Let 

yn = l 0^V an = l 0 g ( 1 + ^ J 

Then by taking logarithms of (13) we obtain 

(14) y J 1 = 2y + a , n > 0 . 
Jn+1 J n n' 

For any sequence {a }9 the solution of (14) is (see for example [15], p. 26) 
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y = 2 I y0 + TT + — + •. • + - = - ^ 1 
\ 2 2^ 2 n / 

= Y - r n n 
where 

CO 

Yn = 2 y° + 2-r 2 "i 
i=0 

(15) 
CO 

S0 n - l - i 2 a. 
i 

Assuming that the g a re such that 

(16) I a y ^ |ofn+1| for n > n0 , 

it follows from (15) that |r | ^ |ar | . Then 

y Y - r - r 
/..rr\ n n n v ^ n 
(17) x n = e = e = Xne 
where Y 
(18) Xn = e n = k^n , 

(19) k = x 0 e x p l ^ 2 - 1 _ 1 a . 

Also 
r \a 

X = x e n i x e' n ' n n n 

< X [ l + — ) 
x n # 

using (ii), and the fact that (1 - u)""1 < 1 + 2u for 0 < u < j 9 

for n > n0 

n 

n x n 

and 

|gnn X > x e > x 1 I = x — 
n n n 1 o I n x 

V 4 / 
From assumption (ii), this means that 
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k - XJ < ± for n - n° • 
If x is an integer, as in recurrences (l)-(3), (8) for r even, and (10), then the solution to 
the recurrence (13) is 
(20) x = neares t integer to k2 , for n ^. n0 

while if x is half an odd integer, as in (8) for r odd and (12), the solution is 

(21) x = (nearest integer to k2*1 + y ) - \ > f o r n — no » 

where k is given by (19). 
Note that if g is always positive, then a > 0, r > 0 , X > x , and (20) may be 

replaced by 
(22) x = [k2 n] for n ^ n0 , 

where [a] denotes the integer par t of a. Similarly if g is always negative then X < x 
and 
(23) x n = [k2 n] for n > n0 , 

where [a] denotes the smallest integer >ja. 
In some cases (see below) k turns out to be a "known" constant (such as y ( l + N/IT)). 

But in general Eqs. (20)-(23) are not legitimate solutions to the recurrence (13), since the 
only way we have to calculate k involves knowing the terms of the sequence. Nevertheless, 
they accurately describe the asymptotic behavior of the sequence. 

We now apply this result to the preceding examples. For all except 2.7 the proofs of 
propert ies (ii) and (iii) are by an easy induction, and are omitted. 

Example 2.1. 
Here g = 0 , k = 2 and (20) correct ly gives the solution x = 22 . 
Example 2.2. 
Condition (ii) holds for n0 = 2, and (iii) requires x ^ x - , which is immediate. 

From (20) x = [k2 ] for n > 1, where 

exp ( w w s • > • * » • *•*«»••••) 

>mpari 

n 

X 
n 

son of 

0 

1 

= l.i 

k 2n 
502837 • • 

with x n 
1 

2 

is as follows: 

2 

5 

3 

26 

4 

677 

5 

458330 

^ n 1.50284 2.25852 5.10091 26.01924 677.00074 458330.00000 
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Example 2.3 is s imilar , and x = [k2 n] where k = 1.678459 • • • . 
Example 2.5. 

It is found that (ii) is valid for n0 = 1 if r = 1 and for n0 = 3 if r > 3. The solu-
tion of (5) for r = 1 (and of example 2.4) is 

y ^ = [ k*n + * ] , n a 0 , 
and for r — 3 is 

yj* = [ k^ + J ]. n S 3 > 

where k is given by (19). The first few values of k are as follows. 

r 1 3 4 5 
k 1.264085 1.526526 1.618034 1.696094 

For r = 4, the value of k is seen to be very close to the "golden rat io" 

<P = y ( l + V"5) = 1.6180339887 ••• 

In fact we may take k = <# for 

y}4 ) = 5 . 

is solved exactly by 

and so 
y, <4> = ^ n

+ ^ + 2f n M , 

yn 
( 4 ) = [<p2R + 2] , n ^ 1 

(This was pointed out to us by D. E. Knuth.) So far, none of the other values of k have been 
identified. Golomb [9] has studied the solution of (5) by a different method. 

Example 2.6. 
The solution to (9) is 

y n = [ { ( 1 + k 2 n ) ] for n * 1 , 

where k = 1.618034 • • • , and again, as pointed out by D. E. Knuth, we may take 

k = <p = { ( 1 + <s/5) , 
since 

x^ = <^n + cp-2n
} n > o 

solves (10) exactly. A s imilar exact solution can be given for (10) for any initial value x0. 
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Example 2.7. 
This is the only example for which (ii) and (iii) are not immediate. Bounds on x and 

y a re first established by induction: 

2 2n-2.1 < x < < 22n-2 f o r n > 4 . 
n J n 

then 

and 
^n = - ( X n - 2 + - 2 ) 2 " I = " y n -2 " ! 

2 2n-3.1 < g < 22n-3 f n ^ 7 . 
&n 

It is now easy to show that (ii) and (iii) hold for n ^ n0 = 5. The solution is 

where k = 1.185305 
y n = [ k 2 n

+ | ] , n * 1 

EXERCISES 

The technique may sometimes be applied to recurrences not having the form of (13). 
We invite the reader to tackle the following. 

(1) y n + 1 = y»n - 3 V n > 0; y0 = 3 , 

which generates the sequence 3, 18, 5778, 192900153618, • • • used in a rapid method of ex-

tracting a square root ([5]). 

(2) y0 = l, yi = 3 

Vl = Vn-l + l j n - 1 

which generates the sequence 1, 3, 4, 13, 53, 690, 36571, 25233991, 922832284862, • • • ([2]). 

(3) y0 = i 

yn+l = y°  + y ° y i + ' * ' + yoYl ' "" V n - °  

which generates the sequence 1, 1, 2, 4, 12, 108, 10476, 108625644, 11798392680793836, 

(4) y0 = 1 

y _•_-,= y2 + y + i> n ^ o 
Jn+1 ^n J n 

which generates the sequence 1, 3, 13, 183, 33673, 1133904603, • • • , the coefficients of the 
leas t rapidly converging continued cotangent ([14]). 
(5) y0 = 1 

y -t.1 = (y + i)2* n > o 
Jn+1 J n 
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which generates the sequence 1, 4, 25, 6769 458329, 210066388900, ••• ([8]). 

(6) y0 = Yi = 1 

yn+l = ^n + 2 y n
( y ° + y l + *' ' + y n - l } ' n ~ X ' 

which generates the sequence 1, 1, 3, 21, 651, 457653, 210065930571, • • • , arising in the 
enumeration of shapes ([6]). 
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